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a b s t r a c t

An efficient alternative route to 4,6-di-tert-butyl-2,2-dipentyl-2,3-dihydro-5-benzofuranol (BO-653), a
potent antiatherogenic antioxidant, has been developed by the application of the base-promoted die-
none-phenol rearrangement reaction. A decisive effect of MgBr2 in the reaction of Grignard reagents is
also described.

� 2010 Elsevier Ltd. All rights reserved.
Figure 1. The structure of BO-653.
4,6-Di-tert-butyl-2,2-dipentyl-2,3-dihydro-5-benzofuranol (BO-653)
1 is found to be the most promising candidate as an antiatherogen-
ic antioxidant among a series of 4,6-di-tert-butyl-2,3-dihydro-5-
benzofuran derivatives which were designed and synthesized in
Chugai Pharmaceutical (Fig. 1).1 It has been reported that this com-
pound 1 shows radical scavenging activities against lipid peroxida-
tion and the inhibitory action on LDL oxidation.1b,c The mobility of
the LDL incubated with 1 lM of this compound 1 in the case of
CuSO4 oxidation is similar to that of native LDL. However, the syn-
thesis of 1 we previously established required nine steps of reac-
tions to attain 10% overall yield which is far less than satisfactory
for its practical production (Scheme 1).1a

As outlined in Scheme 1, although the synthesis allowed using
an inexpensive readily accessible starting material 2 already carry-
ing the requisite two tert-butyl substituents, it required rather te-
dious and extra steps including protection–deprotection steps for
the installation of the 2,2-gem-substituted dihydrobenzofuran
moiety of the target molecule. Namely, it necessitates a sequence
of six steps of reactions to introduce the 3-formyl group to give 3
which further requires three steps including the acidic conditions
often inducing rearrangement and removal of the tertiary butyl
group to reach the final product 1 in 10% overall yield from the
starting material 2 (Scheme 1).

We, therefore, turned our attention to the way of more efficient
and shorter construction of the dihydrofuran moiety on the aro-
matic ring carrying the requisite functionalities without employing
strong acidic conditions. To this end, a base-induced dienone-phe-
nol type rearrangement reported by Nishinaga et al. in 1976
seemed to be the most promising. As appeared it was reported that
the hydroxy-dienone (quinol) 6, generated from the phenol 5 by
oxidation (O2, KOH), brought about the selective 1,2-shift of an al-
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(M. Murakata).
kyl group to furnish excellently the phenol (hydroquinone) 7 upon
exposure to potassium tert-buthoxide in DMF. We thought that
this without employing acidic conditions indicates a facile acquisi-
tion of our target molecule provided an appropriately functional-
ized hydroxyl-dienone precursor could be prepared (Scheme 2).2
Scheme 1. Reagents: (a) H2SO4, Ac2O; (b) TMSI, CH2Cl2; (c) HOCH2NHCOCH2Cl,
H2SO4, Ac2O; (d) c-HCl, EtOH; (e) hexamethylenetetramine, AcOH, H2O; (f) HCl (aq);
(g) (Pen)2CHMgBr; (h) BF3OEt2, CH2Cl2; (i) LiAlH4, THF.
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Scheme 3. Synthesis of bis-tertiary alcohol 10.

Table 1
Additions of Grignard reagents to dienone-ester 9a

Entry Reagent Temp. (�C) Yieldb (%) Conversionc (%)

1 Bu2Mg �25 Trace 55
2 PenMgBr �78 to rt 35 86
3 PenMgBr �25 46 78
4 PenMgBr–MgBr2 �20 81 99
5 PenMgBr–MgBr2 �50 88 97
6 PenMgBr–MgBr2 0 62 99

a All reactions were carried out with 3 equiv of reagents in Et2O for 18 h.
b Determined by crude NMR spectra with anthracene as an internal standard.
c Conversion: ratio of target material to starting material.

Scheme 2. Base-induced dienone-phenol type rearrangement.

Scheme 4. Formation of BO-653 (1) by a base-promoted dienone-p
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To visualize our intention of developing a new synthesis of BO-
653 1 by application of ‘the dienone-phenol rearrangement’ reac-
tion, the benzoquinone 8, bearing two tert-butyl groups and avail-
able in bulk, was chosen for the starting material. Thus, 8 was
treated with the lithium enolate generated in situ by treating
methyl acetate with lithium hexamethyldisilazide (LiHMDS) in
THF at �78 �C to yield regioselectively the dienone-ester 9 in an
excellent yield producing neither regioisomer nor double-addition
product.3 The gem-pentyl group was installed at this stage to yield
the bis-tertiary alcohol 10 (Scheme 3).

At first, the ester 9 was treated with 3 equiv of pentylmagnesium
bromide in ether. The expected reaction occurred both at �78 and
�25 �C to give the desired dienone 10 both in moderate yields, both
accompanied by a complex mixture of unidentified by-products, and
the starting material 9 (entries 2 and 3). Under these conditions, the
dienone carbonyl group of 9 was found to be intact presumably due
to the interference of the adjacent two tertiary butyl groups.4 Since it
is known that a Grignard reagent is in a Schlenk equilibrium between
diorganomagnesium and MgBr2,5 we next examined the reaction in
the presence of the same equivalent of MgBr2 to the Grignard reagent
as the additive so as to shift the equilibrium to the Grignard reagent
side. In precedence to the addition experiment, we treated the ester
9 with dibutylmagnesium at�25 �C in ether in order to confirm the
effect of the additive.6 Virtually, no desired reaction occurred to give
a trace of the target product after consumption of half of the starting
material (entry 1). In contrast, when MgBr2 was present, the desired
reaction readily occurred to give the tertiary alcohol 10, in yields of
81% at �20 �C and 88% at �50 �C, respectively, without the genera-
henol rearrangement reaction followed by an acid-treatment.
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tion of a substantial amount of the by-product mixture (entries 4 and
5).7 However, the yield of 10 was diminished considerably when the
reaction was carried out at 0 �C (Table 1, entry 6).8,9

Having established the reaction conditions suitable for the gener-
ation of the desired dienone intermediate 10, its rearrangement to
the penultimate hydroquinone 13 was then examined under basic
conditions. Upon exposure of 10 to 3 equiv of potassium tert-butox-
ide in DMF at room temperature, the expected ‘dienone-phenol rear-
rangement’ did really occur to furnish the hydroquinone 13,10 which
was immediately treated with methanesulfonic acid to yield the tar-
get molecule, BO-653 1, directly, in 65% yield, with neither initiation
of rearrangement nor removal of tertiary butyl moiety.11 Although
the exact mechanism for the generation of the hydrofuran moiety
of 1 from the hydroquinone intermediate 13 is not clear, it is pre-
sumed to take place only under acidic conditions through either a
substitution pathway (via 13) or an addition–elimination pathway
(via 13–11–12)10a as 1 was not detected under the basic conditions
initiating the rearrangement. Overall yield of 1 from the starting
benzoquinone 8 was 53% in four steps without including any se-
quence of the protection–deprotection steps (Scheme 4).

In conclusion, we have established an alternative procedure
capable of producing 4,6-di-tert-butyl-2,2-dipentyl-2,3-dihydro-5-
benzofuranol (BO-653) 1, a potent antiathrogenic antioxidant, in
53% overall yield starting from a readily accessible starting material
8 through a sequence of four steps of reactions by the application of
the base-promoted dienone-phenol rearrangement reaction in the
key step.
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